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The principal goal of this project is to establish relationships that

would allow application of area-time integral (ATI) calculations based upon

satellite data to estimate rainfall volumes. The research is being carried out

as a collaborative effort between the two participating organizations, with

the satellite data analysis to determine values for the ATIs being done

primarily by the ASTER scientists and the associated radar data analysis to

determine the "ground-truth" rainfall estimates being done primarily at the

South Dakota School of Mines and Technology (SDSM&T). Synthesis of the

two separate kinds of data and investigation of the resulting rainfall-versus-

ATI relationships is then carried out jointly.

The research has been pursued using two different approaches,

which for convenience can be designated as the "fixed-threshold approach"

and the "variable-threshold approach". In the former approach, an attempt

is made to determine a single temperature threshold in the satellite infrared

data that would yield ATI values for identifiable cloud clusters which are

most closely related to the corresponding rainfall amounts. In this respect

the approach resembles the GOES Precipitation Index (GPI), but we make no

assumption of a fixed rainfall rate for each cloudy pixel. Results thus far

have indicated that a strong correlation exists between the rain volumes and

the satellite ATI values, but the optimum threshold for this relationship

seems to differ from one geographic location to another. The difference is

probably related to differences in the basic precipitation mechanisms that

dominate in the different regions. The average rainfall rate associated with

each cloudy pixel is also found to vary across the spectrum of ATI values.

During this reporting period, a journal manuscript summarizing these

results was revised in response to review comments and returned to the

editors of the Monthly Weather Review. Notice of acceptance of these



revisions was received and the paper is now scheduled to appear in the

March 1994 issue of MWR.

Work on the second, or "variable-threshold', approach for

determining the satellite ATI values was essentially suspended during this

period due to exhaustion of project funds.

Most of the ATI work thus far has dealt with cloud clusters from the

Lagrangian or "floating-target" point of view. For many purposes, however,

the Eulerian or "fixed-target" perspective is more appropriate. For a very

large target area encompassing entire cluster life histories, the rain volume-

ATI relationship would obviously be the same in either case. The important

question for the Eulerian perspective is how small the fixed area can be

made while maintaining consistency in that relationship. To investigate that

question, a sample of radar data for echo clusters from southeastern

Montana was partitioned by dividing the radar surveillance area into

successively smaller sectors. If sectors receiving more than 50% of their

rainfall from echoes below the threshold (25 dBz) used for the ATI

calculation are excluded, the rain volume-ATI relationship remains essentially

the same from the overall radar surveillance area of 75,000 km 2 down to

4700 km 2. The cases with weaker echoes could presumably be

incorporated by repeating the ATI computation with a lower reflectivity

threshold. A paper describing this analysis was accepted for presentation at

a Special Session on Hydrometeorology in March 1994; an abstract for that

paper appears in Attachment A.

The Graduate Research Assistant working on the project continued

his investigation of the Probability Density Functions associated with the

radar echo clusters. His effort during the fall semester was supported



largely by local funds. Attachment B is a summary of his work during the

fall semester.

By the end of this reporting period, no response had been received to

the proposal for three additional years of investigation that was submitted to

NASA in June. (News of a forthcoming award for the first year was

received in January, 1994.)



ATTACHMENTA

THE RELATIONSHIPBETWEENRADAR AREA-TIME
INTEGRALS AND AREAL RAINFALL

by

L. Ronald Johnson and Paul L. Smith

For convective elements a strong correlation exists between area-time
integrals (ATIs) determined from radar data and rainfall volumes determined
using a reference frame centered on the storm through time, i.e. a "floating
target" frame. Similar, but somewhat weaker, correlations have been
identified using satellite infrare_l data to determine the ATIs. These
correlations can be useful in studies of storm water budgets and regional or
global-scale precipitation. However, to make such relationships useful to
the hydrology community, they must be established for fixed areas on the
ground (e.g. watersheds). This paper reports the results of an ATI analysis
using a fixed map grid. The grid could be adjusted to represent a specific
watershed or a geo-political boundary. The gridded estimated rainfall
amounts would be desirable quantities for hydrologists and forecasters.

The usable size of the grid elements is investigated. If a cloud system
plays out its entire lifetime within a single grid element, the ATI and the
corresponding rainfall estimate would be the same whether treated in the
Lagrangian or Eulerian frame. Thus, the correlation should be equally strong
for such cases; the important question is what happens as the grid spacing
is reduced. The median "footprint size" for convective radar echo clusters
followed in the COHMEX project is about 87_3 km2 and the quartile range is
37.6 to 183.1 km2. With grid squares comparable to the upper quartile, the
echo footprints frequently cross grid boundaries. The strength of the grid-
element rainfall versus ATI correlation in such cases, and the usable range
of grid spacings, are examined in the paper.



ATTACHMENTB

28 January 1994
MEMORANDUM

FOR: Dr. Paul Smith

FROM: Scott D. Larsen

SUBJECT: Fall 1993 Research Results--A Summary.

This memorandum summarizes the progress of my research so far. The background

material is included as preliminary material for the introduction of the thesis and

upcoming seminar.

The Search for a Uniform Probability Density Function
for Precipitation Processes

Given a set of outcomes described by a set A such that each event A i is a subset of A,

then Pr(A) is the probability that the event A i is an element of A. If the following are

also true,

1. Pr(A_) > 0

2. Pr(A)= ], and

3. Pr(A I _A 2_A3L>.. ) = Pr(AI)+Pr(A2)+Pr(A3)+...

then Pr(A) is called a probability set function. If a probability set function can be
described in terms of a function such that

Pr(A) = Pr(X cA)= __,f(X),
A

then f(X) is said to be a probability density function with random variable X. The

probability density function, or PDF, completely determines the probability of an event

occurring within the set of possible outcomes.

In this study the objective is to determine a frequency distribution, given a radar

reflectivity value, for the area of coverage of the corresponding precipitation event.

Such work with areas and reflectivity values has been extensively done in Area-Time

Integral studies. However, much of the work has assumed that a PDF describing the

relationship exists without any reference to the function itself. This study attempts to

determine if, in fact, such a PDF does exist and if it can be universally applied to a

variety of precipitation events.

Attempting to find a PDF, or any function for that matter, ultimately is a problem of

fitting a characteristic equation (a "curve") to an observed set of data. While the



problem of finding a value if a function is known is fairly straightforward, the reverse
problem is not so and usually more complicated.

This study selected radar precipitation data from the 1981 CCOPE project to use as an
initial attempt to determine a PDF. This data set was chosen for three reasons:

1. The data set is readily available;
2. The data set has been extensively analyzed in past studies; and

3. The radar data involved full volume scans of the precipitation events.

Precipitation cells were initially chosen to fall into one of three time-duration categories:

small, those lasting on the order of 30 minutes; medium those lasting on the order of
90 minutes; and large, those lasting longer than 180 minutes. Secondly, the data set
was divided into six categories based on time of year: May; 1-15 June; 16-30 June; 1-
15 July; 16-31 July; and August. Finally, three of each type cells were analyzed from
each of the six categories for a total of 54 cells analyzed. Individual cells were
selected according to relative isolation from other storms and followed from first to last
echo. The area covered by each cell during each scan was analyzed using interactive

radar analysis software, which produced the echo area statistics used in this study.
Figure 1 shows the distribution of cells within an area-time domain•
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Figure 1. Time as a function of Area Coverage for selected events

As a starting point for determining a PDF, a normal or Gauss•an curve fit was
attempted. A normal curve is described by the equation

[ ,rx- ,V1



Where the symbols I.t and a are the mean and standard deviation of the distribution.

This equation generates a curve with the maximum centered at the mean of the

distribution and the curve tapering off equally toward either end.

All distributions exhibit a tendency toward a maximum, or a peak. The measurements

of central tendency include the mean, median, and mode. The mean (also known as

the arithmetic mean) is simply the sum of the elements of the distribution divided by the
number of elements of the distribution:

N

Zx,
X- i=1

N

The median of the distribution represents the point where exactly one-half of the

distribution lies above and below. The mode of the distribution represents the most

frequently occurring value. In a normal distribution, the mean, median, and mode all
coincide at the same location.

Another measure of a distribution is a degree of spread, or deviation from the mean.
The deviation is the difference between the mean value and the random variable. The

common measurement is the standard deviation, which is simply the square root of the

variance. The variance is calculated as the sum of the square of the deviations divided

by the number of elements of the distribution:

N

'
Var = ,=l

N

Two other measures of the distribution are skewness and kurtosis. Skewness is a

measure of the degree of symmetry about the mean. It is defined as the sum of the

cube of the deviations divided by the cube of the standard deviation:

N

Z(x,-x)'
Sk _-. ,_=1

S.D. 3

Kurtosis is a measure of the peakedness of frequency distributions. It is defined as the

sum of the fourth power of the deviations divided by the fourth power of the standard
deviation:

Ku= ,=l 3
S.D)



For a perfectly normal distribution, the measure of kurtosis is 3. Thus, with the "-3"

term in the kurtosis equation a perfectly normal distribution would have a kurtosis value
of 0.

For the cases studied, values of mean, median, mode, standard deviation, skewness,

and kurtosis have been calculated and are displayed in tables 1-3. The theoretical

mean and standard deviation, p and a, are also calculated and represent the values

the distributions would have if perfectly normal.

Cell ID Min Max Mean Median Mode }x S.D. a Sk Ku

10_01jul 11 33 16.17 14.38 14.00 22.00 3.71 6.63 1.47 1.89
11_04aug 6 29 11.47 9.52 7.00 17.50 5.12 6.92 1.08 0.52

14_20jul 1 42 17.12 14.31 14.00 21.50 5.80 12.12 1.43 2.31
18_17jun 13 28 15.64 14.20 14.00 20.50 2.83 4.61 1.84 3.61

l_20jul 8 37 16.86 14.71 10.00 22.50 6.37 8.66 0.82 -0.11
28_13jun 11 44 18.08 15.87 13.00 27.50 5.70 9.81 1.39 2.27

2_01 aug 12 42 19.45 17.95 18.00 27.00 5.26 8.94 1.33 2.32
2_01jun 9 27 13.01 11.16 10.00 18.00 3.83 5.48 1.35 1.45
2_07jul 1 41 15.14 12.87 8.00 21.00 8.10 11.83 0.70 -0.23

2b._02a ug 10 33 15.11 14.08 14.00 21.50 3.42 6.92 1.78 4.85
37_17jun 5 40 15.13 12.76 9.00 22.50 7.17 10.39 1.15 0.85

3_19jun 7 33 12.42 10.47 9.00 17.00 4.58 9.52 2.08 5.16
51_09jun 1 35 9.49 7.29 2.00 18.00 7.23 10.10 1.06 0.67

61_22 may 8 36 15.21 12.40 9.00 22.00 6.45 8.37 1.11 0.39
6_01jul 8 43 13.29 10.92 9.00 25.50 5.14 10.39 1.95 4.42

q_21may 6 35 14.55 12.68 8.00 20.50 6.74 8.66 0.84 -0.06
s_20jul 1 17 13.99 13.93 14.00 9.00 2.58 4.90 -4.31 18.63

w 31may 13 35 15.62 14.25 14.00 24.00 3.02 6.63 2.42 7.36

Table 1. Statistics for small time-duration precipitation events. All units are in reflectivity factor (dBz).

Cell ID Min Max Mean Median Mode ix S.D. a Sk Ku
11_13jun 3 40 13.55 12.45 12.00 21.50 4.52 10.97 1.11 3.26
12_10jul 10 34 15.48 13.56 13.00 22.00 3.95 7.21 1.76 2.84

16_03aug 2 50 18.13 15.66 9.00 26.00 9.93 14.14 0.68 -0.32

16_2 lj ul 1 52 19.00 16.25 15.00 26.50 6.84 15.00 1.43 2.78
l_07jul 1 41 19.17 17.07 15.00 21.00 6.62 11.83 0.69 -0.03

20_19jun 1 48 13.18 11.02 8.00 24.50 7.54 13.85 0.93 0.81
39_17jun 4 46 16.41 14.47 11.00 25.00 7.60 12.41 0.88 0.46

3_01 aug 1 52 23.08 20.58 18.00 26.50 7.54 15.01 0.91 0.27
3_01jun 8 26 12.93 11.20 10.00 17.00 3.52 5.48 1.19 0.62

4_27jun 1 40 13.80 12.23 11.00 20.50 5.16 11.54 0.64 1.13
51_22may 11 42 17.24 15.38 15.00 26.50 5.14 9.23 1.70 3.11

6_02aug 9 35 16.84 16.60 18.00 22.00 3.20 7.79 0.03 0.21
6_03jun 1 30 9.29 7.73 1.00 15.50 6.27 8.65 0.78 -0.04
6_20jul 8 49 16.88 13.80 13.00 28.50 7.02 12.12 1.59 2.21

7_01jul 10 49 16.34 14.16 11.00 29.50 6.13 11.54 1.97 4.87
7_21jul 6 63 16.65 13.66 12.00 34.50 7.91 16.74 1.59 2.46

gg_21may 12 42 17.50 15.49 14.00 27.00 5.04 8.94 2.01 4.33
k_26may 8 41 14.53 13.01 11.00 24.50 5.26 9.81 1.39 2.55
x_18jun 5 46 17.44 15.39 11.00 25.50 7.97 12.12 0.97 0.61

Table 2. Statistics for medium time-duration precipitation events. All units are in reflectivity factor (dBz).



Cell ID Min Max Mean Median Mode p S.D. a Sk Ku

11_12jul 8 58 17.52 14.92 13.00 33.00 6.74 14.72 1.42 2.02
16_17jun 4 46 15.34 13.52 11.00 25.00 5.59 12.41 1.33 2.39

19_19jun 1 58 16.71 15.67 18.00 29.50 7.13 16.74 0.62 0.45

23_11jul 1 57 16.50 14.33 13.00 29.00 9.04 16.45 1.17 1.86

23_13jun 1 56 19.31 18.43 20.00 28.50 6.29 16.16 1.24 3.11
2_06aug 1 45 12.58 10.38 7.00 23.00 8.03 12.98 0.79 0.13

2_20jul 1 55 17.35 15.09 14.00 28.00 6.64 15.87 1.60 3.05

4_01aug 1 53 21.37 18.29 17.00 27.00 8.45 15.30 1.10 0.69
4_10jun 1 39 15.74 15.10 13.00 20.00 6.42 11.25 0.10 -0.53
4_20jul 1 57 18.44 16.29 15.00 29.00 6.57 16.45 1.48 2.69

5_0 ljul 1 55 19.40 16.48 15.00 28.00 6.92 15.87 1.35 1.61
5_26jun 1 57 16.81 14.93 10.00 29.00 8.96 16.45 0.81 0.57

8_02aug 1 58 17.92 15.54 15.00 29.50 6.64 16.74 1.81 4.18
9_12jun 1 63 18.35 15.75 15.00 32.00 7.56 18.18 1.75 4.06

aa_21 may 7 63 18.98 17.83 15.00 35.00 5.67 16.45 1.29 3.22
f1_21may 2 63 20.67 19.52 10.00 32.50 9.21 17.89 0.66 0.14

I 26may 1 55 22.26 22.56 27.00 28.00 8.17 15.87 -0.16 -0.24

Table 3. Statistics for large time-duration precipitation events. All units are in reflectivity factor (dBz).

The only conclusion that can be drawn thus far is that the distributions do not exhibit a

normal tendency. Skewness tests indicate most have peaks toward the left side. No

goodness-of-fit tests have been applied yet but graphical inspection shows this is the

case. The next step in this research involves the following:

1. Apply a goodness-of-fit test to quantify the above observations. This should be

fairly straightforward.

2. Determine theoretical distributions for the above distributions based on the Pearson

family of curves, specifically types I, III, and V. From the theoretical distributions, some

type of goodness-of-fit test needs to be applied so the representative frequency curve
can be identified.

3. Within the given parameters, a tolerance value needs to be identified in order to

determine which fit is best. In other words, how small do the deviations need to be in

order that a fit be accomplished?

I see this thesis becoming an exercise in trying to fit the observed distributions to a few

known curves. Since the Pearson curves can be manipulated to become standard

distributions (exponential, gamma, etc.), this may be the direction to go. Unfortunately

the canned statistics routines I have encountered this far all fall short in being able to

specify a distribution. It should not be too hard to code this, however, and once the

appropriate parameters for the Pearson curves are identified, implementing that will
probably be the next step.

cc: Ron Johnson


